1,735 research outputs found

    Comment on "Dynamic Opinion Model and Invasion Percolation"

    Full text link
    In J. Shao et al., PRL 103, 108701 (2009) the authors claim that a model with majority rule coarsening exhibits in d=2 a percolation transition in the universality class of invasion percolation with trapping. In the present comment we give compelling evidence, including high statistics simulations on much larger lattices, that this is not correct. and that the model is trivially in the ordinary percolation universality class.Comment: 1 pag

    Reply to "Comment on `Performance of different synchronization measures in real data: A case study on electroencephalographic signals'"

    Get PDF
    We agree with the Comment by Nicolaou and Nasuto about the utility of mutual information (MI) when properly estimated and we also concur with their view that the estimation based on k nearest neighbors gives optimal results. However, we claim that embedding parameters can indeed change MI results, as we show for the electroencephalogram data sets of our original study and for coupled chaotic systems. Furthermore, we show that proper embedding can actually improve the estimation of MI with the k nearest neighbors algorithm

    Monte Carlo Protein Folding: Simulations of Met-Enkephalin with Solvent-Accessible Area Parameterizations

    Get PDF
    Treating realistically the ambient water is one of the main difficulties in applying Monte Carlo methods to protein folding. The solvent-accessible area method, a popular method for treating water implicitly, is investigated by means of Metropolis simulations of the brain peptide Met-Enkephalin. For the phenomenological energy function ECEPP/2 nine atomic solvation parameter (ASP) sets are studied that had been proposed by previous authors. The simulations are compared with each other, with simulations with a distance dependent electrostatic permittivity ϵ(r)\epsilon (r), and with vacuum simulations (ϵ=2\epsilon =2). Parallel tempering and a recently proposed biased Metropolis technique are employed and their performances are evaluated. The measured observables include energy and dihedral probability densities (pds), integrated autocorrelation times, and acceptance rates. Two of the ASP sets turn out to be unsuitable for these simulations. For all other sets, selected configurations are minimized in search of the global energy minima. Unique minima are found for the vacuum and the ϵ(r)\epsilon(r) system, but for none of the ASP models. Other observables show a remarkable dependence on the ASPs. In particular, autocorrelation times vary dramatically with the ASP parameters. Three ASP sets have much smaller autocorrelations at 300 K than the vacuum simulations, opening the possibility that simulations can be speeded up vastly by judiciously chosing details of the forceComment: 10 pages; published in "NIC Symposium 2004", eds. D. Wolf at el. (NIC, Juelich, 2004

    Epidemic analysis of the second-order transition in the Ziff-Gulari-Barshad surface-reaction model

    Full text link
    We study the dynamic behavior of the Ziff-Gulari-Barshad (ZGB) irreversible surface-reaction model around its kinetic second-order phase transition, using both epidemic and poisoning-time analyses. We find that the critical point is given by p_1 = 0.3873682 \pm 0.0000015, which is lower than the previous value. We also obtain precise values of the dynamical critical exponents z, \delta, and \eta which provide further numerical evidence that this transition is in the same universality class as directed percolation.Comment: REVTEX, 4 pages, 5 figures, Submitted to Physical Review

    Chaotic synchronizations of spatially extended systems as non-equilibrium phase transitions

    Full text link
    Two replicas of spatially extended chaotic systems synchronize to a common spatio-temporal chaotic state when coupled above a critical strength. As a prototype of each single spatio-temporal chaotic system a lattice of maps interacting via power-law coupling is considered. The synchronization transition is studied as a non-equilibrium phase transition, and its critical properties are analyzed at varying the spatial interaction range as well as the nonlinearity of the dynamical units composing each system. In particular, continuous and discontinuous local maps are considered. In both cases the transitions are of the second order with critical indexes varying with the exponent characterizing the interaction range. For discontinuous maps it is numerically shown that the transition belongs to the {\it anomalous directed percolation} (ADP) family of universality classes, previously identified for L{\'e}vy-flight spreading of epidemic processes. For continuous maps, the critical exponents are different from those characterizing ADP, but apart from the nearest-neighbor case, the identification of the corresponding universality classes remains an open problem. Finally, to test the influence of deterministic correlations for the studied synchronization transitions, the chaotic dynamical evolutions are substituted by suitable stochastic models. In this framework and for the discontinuous case, it is possible to derive an effective Langevin description that corresponds to that proposed for ADP.Comment: 12 pages, 5 figures Comments are welcom

    Synchronization of Coupled Systems with Spatiotemporal Chaos

    Full text link
    We argue that the synchronization transition of stochastically coupled cellular automata, discovered recently by L.G. Morelli {\it et al.} (Phys. Rev. {\bf 58 E}, R8 (1998)), is generically in the directed percolation universality class. In particular, this holds numerically for the specific example studied by these authors, in contrast to their claim. For real-valued systems with spatiotemporal chaos such as coupled map lattices, we claim that the synchronization transition is generically in the universality class of the Kardar-Parisi-Zhang equation with a nonlinear growth limiting term.Comment: 4 pages, including 3 figures; submitted to Phys. Rev.

    Phase transitions and critical behaviour in one-dimensional non-equilibrium kinetic Ising models with branching annihilating random walk of kinks

    Full text link
    One-dimensional non-equilibrium kinetic Ising models evolving under the competing effect of spin flips at zero temperature and nearest-neighbour spin exchanges exhibiting directed percolation-like parity conserving(PC) phase transition on the level of kinks are now further investigated, numerically, from the point of view of the underlying spin system. Critical exponents characterising its statics and dynamics are reported. It is found that the influence of the PC transition on the critical exponents of the spins is strong and the origin of drastic changes as compared to the Glauber-Ising case can be traced back to the hyperscaling law stemming from directed percolation(DP). Effect of an external magnetic field, leading to DP-type critical behaviour on the level of kinks, is also studied, mainly through the generalised mean field approximation.Comment: 15 pages, using RevTeX, 13 Postscript figures included, submitted to J.Phys.A, figures 12 and 13 fixe

    The three species monomer-monomer model in the reaction-controlled limit

    Full text link
    We study the one dimensional three species monomer-monomer reaction model in the reaction controlled limit using mean-field theory and dynamic Monte Carlo simulations. The phase diagram consists of a reactive steady state bordered by three equivalent adsorbing phases where the surface is saturated with one monomer species. The transitions from the reactive phase are all continuous, while the transitions between adsorbing phases are first-order. Bicritical points occur where the reactive phase simultaneously meets two adsorbing phases. The transitions from the reactive to an adsorbing phase show directed percolation critical behaviour, while the universal behaviour at the bicritical points is in the even branching annihilating random walk class. The results are contrasted and compared to previous results for the adsorption-controlled limit of the same model.Comment: 12 pages using RevTeX, plus 4 postscript figures. Uses psfig.sty. accepted to Journal of Physics

    One Dimensional Nonequilibrium Kinetic Ising Models with Branching Annihilating Random Walk

    Full text link
    Nonequilibrium kinetic Ising models evolving under the competing effect of spin flips at zero temperature and nearest neighbour spin exchanges at T=T=\infty are investigated numerically from the point of view of a phase transition. Branching annihilating random walk of the ferromagnetic domain boundaries determines the steady state of the system for a range of parameters of the model. Critical exponents obtained by simulation are found to agree, within error, with those in Grassberger's cellular automata.Comment: 10 pages, Latex, figures upon request, SZFKI 05/9
    corecore